On the Asymptoticity Aspect of Hyers-Ulam Stability of Quadratic Mappings
نویسندگان
چکیده
The question concerning the stability of group homomorphisms was posed by Ulam 1 . Hyers 2 solved the case of approximately additive mappings on Banach spaces. Aoki 3 provided a generalization of the Hyers’ theorem for additive mappings. In 4 , Rassias generalized the result of Hyers for linear mappings by allowing the Cauchy difference to be unbounded see also 5 . The result of Rassias has been generalized by Găvruţa 6 who permitted the norm of the Cauchy difference f x y − f x − f y to be bounded by a general control function under some conditions. This stability concept is also applied to the case of various functional equations by a number of authors. For more results on the stability of functional equations, see 7–32 . We also refer the readers to the books 33–37 . It is easy to see that the function f : → defined by f x cx2 with c an arbitrary constant is a solution of the functional equation
منابع مشابه
Approximate additive and quadratic mappings in 2-Banach spaces and related topics
Won{Gil Park [Won{Gil Park, J. Math. Anal. Appl., 376 (1) (2011) 193{202] proved the Hyers{Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadraticfunctional equation in 2{Banach spaces. One can easily see that all results of this paper are incorrect.Hence the control functions in all theorems of this paper are not correct. In this paper, we correctthes...
متن کاملJ. M. Rassias Product-sum Stability of an Euler-lagrange Functional Equation
In 1940 (and 1964) S. M. Ulam proposed the well-known Ulam stability problem. In 1941 D. H. Hyers solved the Hyers-Ulam problem for linear mappings. In 1992 and 2008, J. M. Rassias introduced the Euler-Lagrange quadratic mappings and the JMRassias “product-sum” stability, respectively. In this paper we introduce an Euler-Lagrange type quadratic functional equation and investigate the JMRassias ...
متن کاملOn the stability of multi-m-Jensen mappings
In this article, we introduce the multi-$m$-Jensen mappings and characterize them as a single equation. Using a fixed point theorem, we study the generalized Hyers-Ulam stability for such mappings. As a consequence, we show that every multi-$m$-Jensen mappings (under some conditions) is hyperstable.
متن کاملGeneralized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has ...
متن کاملOn approximate dectic mappings in non-Archimedean spaces: A fixed point approach
In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubicand quartic functional equations with constants coecients in the sense of dectic mappings in non-Archimedean normed spaces.
متن کامل